If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.5t^2=50
We move all terms to the left:
1.5t^2-(50)=0
a = 1.5; b = 0; c = -50;
Δ = b2-4ac
Δ = 02-4·1.5·(-50)
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{3}}{2*1.5}=\frac{0-10\sqrt{3}}{3} =-\frac{10\sqrt{3}}{3} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{3}}{2*1.5}=\frac{0+10\sqrt{3}}{3} =\frac{10\sqrt{3}}{3} $
| 4=2(5n+10)+3 | | 19n-9=20n-4 | | (1/2)x^2+6=−12 | | 6.3+0.6x=-1.5x+4.2 | | (1/2)x2+6=−12 | | 6x+10=4(x+1) | | 3m-7m+4=32 | | 19n-9=20-4 | | 10+5a-3+7a=3a+52 | | 1/2x^2+6=−12 | | 880=11x | | -32f^2-80f-50=0 | | -19t-7t+18=-18-20t | | 1/2x2+6=−12 | | 24+x+29=189 | | 36=12x-8x | | 2+n1/3=11 | | 104=7k+27 | | 21-1+75x=180 | | 9y+6-2y=3y+18 | | (x^2+10)=(3x+17) | | 12=m3+ 8 | | 52=-6x+4 | | 2.3w+(=-3w) | | -p^2-22p-121=0 | | 20=7x= | | 58+123+x=180 | | 7x=1=29 | | 75=6xX | | -8g+6g+14=3g-7g | | -7x+5=-11x+17=x | | -10-q=-7q+10+10 |